Gradient estimates and blow - up analysis for stationary harmonic maps

نویسندگان

  • Fang-Hua Lin
  • FANG-HUA LIN
چکیده

For stationary harmonic maps between Riemannian manifolds, we provide a necessary and sufficient condition for the uniform interior and boundary gradient estimates in terms of the total energy of maps. We also show that if analytic target manifolds do not carry any harmonic S2, then the singular sets of stationary maps are m ≤ n− 4 rectifiable. Both of these results follow from a general analysis on the defect measures and energy concentration sets associated with a weakly converging sequence of stationary harmonic maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

für Mathematik in den Naturwissenschaften Leipzig Regularity and blow - up analysis for

If u ∈ H(M,N) is a weakly J-holomorphic map from a compact without boundary almost hermitian manifold (M, j, g) into another compact without boundary almost hermitian manifold (N, J, h). Then it is smooth near any point x where Du has vanishing Morrey norm M2,2m−2, with 2m =dim(M). Hence H2m−2measure of the singular set for a stationary J-holomorphic map is zero. Blow-up analysis and the energy...

متن کامل

Schrödinger flow near harmonic maps

For the Schrödinger flow from R2 × R+ to the 2-sphere S2, it is not known if finite energy solutions can blow up in finite time. We study equivariant solutions whose energy is near the energy of the family of equivariant harmonic maps. We prove that such solutions remain close to the harmonic maps until the blowup time (if any), and that they blow up if and only if the length scale of the neare...

متن کامل

A pr 2 00 5 Schrödinger Flow Near Harmonic Maps Stephen Gustafson

Abstract For the Schrödinger flow from R × R to the 2-sphere S, it is not known if finite energy solutions can blow up in finite time. We study equivariant solutions whose energy is near the energy of the family of equivariant harmonic maps. We prove that such solutions remain close to the harmonic maps until the blow up time (if any), and that they blow up if and only if the length scale of th...

متن کامل

The University of Chicago on the Global Behavior of Wave Maps a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Mathematics by Andrew

We study wave maps equation in three distinct settings. First, we prove a small data result for wave maps on a curved background. To be specific, we consider the Cauchy problem for wave maps u : R×M → N , for Riemannian manifolds (M, g) and (N, h). We prove global existence and uniqueness for initial data, (u0, u1), that is small in the critical norm Ḣ d 2 × Ḣ d2−1(M ;TN), in the case (M, g) = ...

متن کامل

Regularity Theorems and Energy Identities for Dirac-harmonic Maps

We study Dirac-harmonic maps from a Riemann surface to a sphere Sn. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999